
5. Vector Space Rn

5.1 Subspaces and Spanning

In Section 2.2 we introduced the set Rn of all n-tuples (called vectors), and began our investigation of the
matrix transformations Rn→ Rm given by matrix multiplication by an m×n matrix. Particular attention
was paid to the euclidean plane R2 where certain simple geometric transformations were seen to be ma-
trix transformations. Then in Section 2.6 we introduced linear transformations, showed that they are all
matrix transformations, and found the matrices of rotations and reflections in R2. We returned to this in
Section 4.4 where we showed that projections, reflections, and rotations of R2 and R3 were all linear, and
where we related areas and volumes to determinants.

In this chapter we investigate Rn in full generality, and introduce some of the most important concepts
and methods in linear algebra. The n-tuples in Rn will continue to be denoted x, y, and so on, and will be
written as rows or columns depending on the context.

Subspaces of Rn

Definition 5.1 Subspace of Rn

A set1U of vectors in Rn is called a subspace of Rn if it satisfies the following properties:

S1. The zero vector 0 ∈U .

S2. If x ∈U and y ∈U , then x+y ∈U .

S3. If x ∈U , then ax ∈U for every real number a.

We say that the subset U is closed under addition if S2 holds, and that U is closed under scalar multi-

plication if S3 holds.

Clearly Rn is a subspace of itself, and this chapter is about these subspaces and their properties. The
set U = {0}, consisting of only the zero vector, is also a subspace because 0+0 = 0 and a0 = 0 for each a

in R; it is called the zero subspace. Any subspace of Rn other than {0} or Rn is called a proper subspace.

1We use the language of sets. Informally, a set X is a collection of objects, called the elements of the set. The fact that x is
an element of X is denoted x ∈ X . Two sets X and Y are called equal (written X = Y ) if they have the same elements. If every
element of X is in the set Y , we say that X is a subset of Y , and write X ⊆ Y . Hence X ⊆ Y and Y ⊆ X both hold if and only if
X = Y .
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We saw in Section 4.2 that every plane M through the origin in R3

has equation ax+ by+ cz = 0 where a, b, and c are not all zero. Here

n =




a

b

c


 is a normal for the plane and

M = {v in R3 | n ·v = 0}

where v =




x

y

z


 and n · v denotes the dot product introduced in Sec-

tion 2.2 (see the diagram).2 Then M is a subspace of R3. Indeed we show
that M satisfies S1, S2, and S3 as follows:

S1. 0 ∈M because n ·0 = 0;

S2. If v ∈M and v1 ∈M , then n · (v+v1) = n ·v+n ·v1 = 0+0 = 0 , so v+v1 ∈M;

S3. If v ∈M , then n · (av) = a(n ·v) = a(0) = 0 , so av ∈M.

This proves the first part of

Example 5.1.1
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Planes and lines through the origin in R3 are all subspaces of R3.

Solution. We dealt with planes above. If L is a line through
the origin with direction vector d, then L = {td | t ∈ R} (see
the diagram). We leave it as an exercise to verify that L satisfies
S1, S2, and S3.

Example 5.1.1 shows that lines through the origin in R2 are subspaces; in fact, they are the only proper
subspaces of R2 (Exercise 5.1.24). Indeed, we shall see in Example 5.2.14 that lines and planes through
the origin in R3 are the only proper subspaces of R3. Thus the geometry of lines and planes through the
origin is captured by the subspace concept. (Note that every line or plane is just a translation of one of
these.)

Subspaces can also be used to describe important features of an m×n matrix A. The null space of A,
denoted null A, and the image space of A, denoted im A, are defined by

null A = {x ∈ Rn | Ax = 0} and im A = {Ax | x ∈ Rn}

In the language of Chapter 2, null A consists of all solutions x in Rn of the homogeneous system Ax = 0,
and im A is the set of all vectors y in Rm such that Ax = y has a solution x. Note that x is in null A if it

2We are using set notation here. In general {q | p} means the set of all objects q with property p.
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satisfies the condition Ax = 0, while im A consists of vectors of the form Ax for some x in Rn. These two
ways to describe subsets occur frequently.

Example 5.1.2

If A is an m×n matrix, then:

1. null A is a subspace of Rn.

2. im A is a subspace of Rm.

Solution.

1. The zero vector 0 ∈ Rn lies in null A because A0 = 0.3If x and x1 are in null A, then x+x1

and ax are in null A because they satisfy the required condition:

A(x+x1) = Ax+Ax1 = 0+0 = 0 and A(ax) = a(Ax) = a0 = 0

Hence null A satisfies S1, S2, and S3, and so is a subspace of Rn.

2. The zero vector 0 ∈ Rm lies in im A because 0 = A0. Suppose that y and y1 are in im A, say
y = Ax and y1 = Ax1 where x and x1 are in Rn. Then

y+y1 = Ax+Ax1 = A(x+x1) and ay = a(Ax) = A(ax)

show that y+y1 and ay are both in im A (they have the required form). Hence im A is a
subspace of Rm.

There are other important subspaces associated with a matrix A that clarify basic properties of A. If A

is an n×n matrix and λ is any number, let

Eλ (A) = {x ∈ Rn | Ax = λx}
A vector x is in Eλ (A) if and only if (λ I−A)x = 0, so Example 5.1.2 gives:

Example 5.1.3

Eλ (A) = null (λ I−A) is a subspace of Rn for each n×n matrix A and number λ .

Eλ (A) is called the eigenspace of A corresponding to λ . The reason for the name is that, in the terminology
of Section 3.3, λ is an eigenvalue of A if Eλ (A) 6= {0}. In this case the nonzero vectors in Eλ (A) are called
the eigenvectors of A corresponding to λ .

The reader should not get the impression that every subset of Rn is a subspace. For example:

U1 =

{[
x

y

]∣∣∣∣x≥ 0

}
satisfies S1 and S2, but not S3;

3We are using 0 to represent the zero vector in both Rm and Rn. This abuse of notation is common and causes no confusion
once everybody knows what is going on.
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U2 =

{[
x

y

]∣∣∣∣x
2 = y2

}
satisfies S1 and S3, but not S2;

Hence neither U1 nor U2 is a subspace of R2. (However, see Exercise 5.1.20.)

Spanning Sets

Let v and w be two nonzero, nonparallel vectors in R3 with their tails at the origin. The plane M through
the origin containing these vectors is described in Section 4.2 by saying that n = v×w is a normal for M,
and that M consists of all vectors p such that n ·p = 0.4 While this is a very useful way to look at planes,
there is another approach that is at least as useful in R3 and, more importantly, works for all subspaces of
Rn for any n≥ 1.

0

v

av

w bw

p

M

The idea is as follows: Observe that, by the diagram, a vector p is in
M if and only if it has the form

p = av+bw

for certain real numbers a and b (we say that p is a linear combination of
v and w). Hence we can describe M as

M = {ax+bw | a, b ∈ R}.5

and we say that {v, w} is a spanning set for M. It is this notion of a spanning set that provides a way to
describe all subspaces of Rn.

As in Section 1.3, given vectors x1, x2, . . . , xk in Rn, a vector of the form

t1x1 + t2x2 + · · ·+ tkxk where the ti are scalars

is called a linear combination of the xi, and ti is called the coefficient of xi in the linear combination.

Definition 5.2 Linear Combinations and Span in Rn

The set of all such linear combinations is called the span of the xi and is denoted

span{x1, x2, . . . , xk}= {t1x1 + t2x2 + · · ·+ tkxk | ti in R}

If V = span{x1, x2, . . . , xk}, we say that V is spanned by the vectors x1, x2, . . . , xk, and that the
vectors x1, x2, . . . , xk span the space V .

Here are two examples:
span{x}= {tx | t ∈ R}

which we write as span{x}= Rx for simplicity.

span{x, y}= {rx+ sy | r, s ∈ R}
4The vector n = v×w is nonzero because v and w are not parallel.
5In particular, this implies that any vector p orthogonal to v×w must be a linear combination p = av+ bw of v and w for

some a and b. Can you prove this directly?
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In particular, the above discussion shows that, if v and w are two nonzero, nonparallel vectors in R3, then

M = span{v, w}
is the plane in R3 containing v and w. Moreover, if d is any nonzero vector in R3 (or R2), then

L = span{v}= {td | t ∈ R}= Rd

is the line with direction vector d. Hence lines and planes can both be described in terms of spanning sets.

Example 5.1.4

Let x = (2, −1, 2, 1) and y = (3, 4, −1, 1) in R4. Determine whether p = (0, −11, 8, 1) or
q = (2, 3, 1, 2) are in U = span{x, y}.

Solution. The vector p is in U if and only if p = sx+ ty for scalars s and t. Equating components
gives equations

2s+3t = 0, −s+4t =−11, 2s− t = 8, and s+ t = 1

This linear system has solution s = 3 and t =−2, so p is in U . On the other hand, asking that
q = sx+ ty leads to equations

2s+3t = 2, −s+4t = 3, 2s− t = 1, and s+ t = 2

and this system has no solution. So q does not lie in U .

Theorem 5.1.1: Span Theorem

Let U = span{x1, x2, . . . , xk} in Rn. Then:

1. U is a subspace of Rn containing each xi.

2. If W is a subspace of Rn and each xi ∈W , then U ⊆W .

Proof.

1. The zero vector 0 is in U because 0 = 0x1 + 0x2 + · · ·+ 0xk is a linear combination of the xi. If
x = t1x1 + t2x2 + · · ·+ tkxk and y = s1x1 + s2x2 + · · ·+ skxk are in U , then x+ y and ax are in U

because
x+y = (t1 + s1)x1 +(t2+ s2)x2 + · · ·+(tk + sk)xk, and

ax = (at1)x1 +(at2)x2 + · · ·+(atk)xk

Finally each xi is in U (for example, x2 = 0x1 +1x2 + · · ·+0xk) so S1, S2, and S3 are satisfied for
U , proving (1).

2. Let x = t1x1+ t2x2+ · · ·+ tkxk where the ti are scalars and each xi ∈W . Then each tixi ∈W because
W satisfies S3. But then x ∈W because W satisfies S2 (verify). This proves (2).

Condition (2) in Theorem 5.1.1 can be expressed by saying that span{x1, x2, . . . , xk} is the smallest

subspace of Rn that contains each xi. This is useful for showing that two subspaces U and W are equal,
since this amounts to showing that both U ⊆W and W ⊆U . Here is an example of how it is used.
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Example 5.1.5

If x and y are in Rn, show that span{x, y}= span{x+y, x−y}.

Solution. Since both x+y and x−y are in span{x, y}, Theorem 5.1.1 gives

span{x+y, x−y} ⊆ span{x, y}

But x = 1
2(x+y)+ 1

2(x−y) and y = 1
2(x+y)− 1

2(x−y) are both in span{x+y, x−y}, so

span{x, y} ⊆ span{x+y, x−y}

again by Theorem 5.1.1. Thus span{x, y}= span{x+y, x−y}, as desired.

It turns out that many important subspaces are best described by giving a spanning set. Here are three
examples, beginning with an important spanning set for Rn itself. Column j of the n×n identity matrix
In is denoted e j and called the jth coordinate vector in Rn, and the set {e1, e2, . . . , en} is called the

standard basis of Rn. If x =




x1

x2
...

xn


 is any vector in Rn, then x = x1e1 + x2e2 + · · ·+ xnen, as the reader

can verify. This proves:

Example 5.1.6

Rn = span{e1, e2, . . . , en} where e1, e2, . . . , en are the columns of In.

If A is an m×n matrix A, the next two examples show that it is a routine matter to find spanning sets
for null A and im A.

Example 5.1.7

Given an m×n matrix A, let x1, x2, . . . , xk denote the basic solutions to the system Ax = 0 given
by the gaussian algorithm. Then

null A = span{x1, x2, . . . , xk}

Solution. If x ∈ null A, then Ax = 0 so Theorem 1.3.2 shows that x is a linear combination of the
basic solutions; that is, null A⊆ span{x1, x2, . . . , xk}. On the other hand, if x is in
span{x1, x2, . . . , xk}, then x = t1x1 + t2x2 + · · ·+ tkxk for scalars ti, so

Ax = t1Ax1 + t2Ax2 + · · ·+ tkAxk = t10+ t20+ · · ·+ tk0 = 0

This shows that x ∈ null A, and hence that span{x1, x2, . . . , xk} ⊆ null A. Thus we have equality.
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Example 5.1.8

Let c1, c2, . . . , cn denote the columns of the m×n matrix A. Then

im A = span{c1, c2, . . . , cn}

Solution. If {e1, e2, . . . , en} is the standard basis of Rn, observe that

[
Ae1 Ae2 · · · Aen

]
= A

[
e1 e2 · · · en

]
= AIn = A =

[
c1 c2 · · ·cn

]
.

Hence ci = Aei is in im A for each i, so span{c1, c2, . . . , cn} ⊆ im A.

Conversely, let y be in im A, say y = Ax for some x in Rn. If x =




x1

x2
...

xn


, then Definition 2.5 gives

y = Ax = x1c1 + x2c2 + · · ·+ xncn is in span{c1, c2, . . . , cn}

This shows that im A⊆ span{c1, c2, . . . , cn}, and the result follows.

Exercises for 5.1

We often write vectors in Rn as rows.

Exercise 5.1.1 In each case determine whether U is a
subspace of R3. Support your answer.

a. U = {(1, s, t) | s and t in R}.

b. U = {(0, s, t) | s and t in R}.

c. U = {(r, s, t) | r, s, and t in R,
− r+3s+2t = 0}.

d. U = {(r, 3s, r−2) | r and s in R}.

e. U = {(r, 0, s) | r2 + s2 = 0, r and s in R}.

f. U = {(2r, −s2, t) | r, s, and t in R}.

Exercise 5.1.2 In each case determine if x lies in U =
span{y, z}. If x is in U , write it as a linear combination
of y and z; if x is not in U , show why not.

a. x = (2, −1, 0, 1), y = (1, 0, 0, 1), and
z = (0, 1, 0, 1).

b. x = (1, 2, 15, 11), y = (2, −1, 0, 2), and
z = (1, −1, −3, 1).

c. x = (8, 3, −13, 20), y = (2, 1, −3, 5), and
z = (−1, 0, 2, −3).

d. x = (2, 5, 8, 3), y = (2, −1, 0, 5), and
z = (−1, 2, 2, −3).

Exercise 5.1.3 In each case determine if the given vec-
tors span R4. Support your answer.

a. {(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)}.

b. {(1, 3, −5, 0), (−2, 1, 0, 0), (0, 2, 1, −1),
(1, −4, 5, 0)}.
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Exercise 5.1.4 Is it possible that {(1, 2, 0), (2, 0, 3)}
can span the subspace U = {(r, s, 0) | r and s in R}? De-
fend your answer.

Exercise 5.1.5 Give a spanning set for the zero subspace
{0} of Rn.

Exercise 5.1.6 Is R2 a subspace of R3? Defend your
answer.

Exercise 5.1.7 If U = span{x, y, z} in Rn, show that
U = span{x+ tz, y, z} for every t in R.

Exercise 5.1.8 If U = span{x, y, z} in Rn, show that
U = span{x+y, y+ z, z+x}.
Exercise 5.1.9 If a 6= 0 is a scalar, show that
span{ax}= span{x} for every vector x in Rn.

Exercise 5.1.10 If a1, a2, . . . , ak are nonzero
scalars, show that span{a1x1, a2x2, . . . , akxk} =
span{x1, x2, . . . , xk} for any vectors xi in Rn.

Exercise 5.1.11 If x 6= 0 in Rn, determine all subspaces
of span{x}.
Exercise 5.1.12 Suppose that U = span{x1, x2, . . . , xk}
where each xi is in Rn. If A is an m×n matrix and Axi = 0

for each i, show that Ay = 0 for every vector y in U .

Exercise 5.1.13 If A is an m× n matrix, show that, for
each invertible m×m matrix U , null (A) = null (UA).

Exercise 5.1.14 If A is an m× n matrix, show that, for
each invertible n×n matrix V , im (A) = im (AV ).

Exercise 5.1.15 Let U be a subspace of Rn, and let x be
a vector in Rn.

a. If ax is in U where a 6= 0 is a number, show that x

is in U .

b. If y and x+ y are in U where y is a vector in Rn,
show that x is in U .

Exercise 5.1.16 In each case either show that the state-
ment is true or give an example showing that it is false.

a. If U 6= Rn is a subspace of Rn and x+ y is in U ,
then x and y are both in U .

b. If U is a subspace of Rn and rx is in U for all r in
R, then x is in U .

c. If U is a subspace of Rn and x is in U , then −x is
also in U .

d. If x is in U and U = span {y, z}, then U =
span {x, y, z}.

e. The empty set of vectors in Rn is a subspace of
Rn.

f.

[
0
1

]
is in span

{[
1
0

]
,

[
2
0

]}
.

Exercise 5.1.17

a. If A and B are m×n matrices, show that
U = {x in Rn | Ax = Bx} is a subspace of Rn.

b. What if A is m×n, B is k×n, and m 6= k?

Exercise 5.1.18 Suppose that x1, x2, . . . , xk are vectors
in Rn. If y= a1x1+a2x2+ · · ·+akxk where a1 6= 0, show
that span{x1 x2, . . . , xk}= span{y1, x2, . . . , xk}.
Exercise 5.1.19 If U 6= {0} is a subspace of R, show
that U = R.

Exercise 5.1.20 Let U be a nonempty subset of Rn.
Show that U is a subspace if and only if S2 and S3 hold.

Exercise 5.1.21 If S and T are nonempty sets of vectors
in Rn, and if S⊆ T , show that span{S} ⊆ span{T}.
Exercise 5.1.22 Let U and W be subspaces of Rn. De-
fine their intersection U ∩W and their sum U +W as
follows:

U ∩W = {x ∈Rn | x belongs to both U and W}.
U +W = {x ∈ Rn | x is a sum of a vector in U

and a vector in W}.

a. Show that U ∩W is a subspace of Rn.

b. Show that U +W is a subspace of Rn.

Exercise 5.1.23 Let P denote an invertible n×n matrix.
If λ is a number, show that

Eλ (PAP−1) = {Px | x is in Eλ (A)}

for each n×n matrix A.

Exercise 5.1.24 Show that every proper subspace U of
R2 is a line through the origin. [Hint: If d is a nonzero
vector in U , let L = Rd = {rd | r in R} denote the line
with direction vector d. If u is in U but not in L, argue
geometrically that every vector v in R2 is a linear combi-
nation of u and d.]
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5.2 Independence and Dimension

Some spanning sets are better than others. If U = span{x1, x2, . . . , xk} is a subspace of Rn, then every
vector in U can be written as a linear combination of the xi in at least one way. Our interest here is in
spanning sets where each vector in U has a exactly one representation as a linear combination of these
vectors.

Linear Independence

Given x1, x2, . . . , xk in Rn, suppose that two linear combinations are equal:

r1x1 + r2x2 + · · ·+ rkxk = s1x1 + s2x2 + · · ·+ skxk

We are looking for a condition on the set {x1, x2, . . . , xk} of vectors that guarantees that this representation
is unique; that is, ri = si for each i. Taking all terms to the left side gives

(r1− s1)x1 +(r2− s2)x2 + · · ·+(rk− sk)xk = 0

so the required condition is that this equation forces all the coefficients ri− si to be zero.

Definition 5.3 Linear Independence in Rn

With this in mind, we call a set {x1, x2, . . . , xk} of vectors linearly independent (or simply
independent) if it satisfies the following condition:

If t1x1 + t2x2 + · · ·+ tkxk = 0 then t1 = t2 = · · ·= tk = 0

We record the result of the above discussion for reference.

Theorem 5.2.1

If {x1, x2, . . . , xk} is an independent set of vectors in Rn, then every vector in
span{x1, x2, . . . , xk} has a unique representation as a linear combination of the xi.

It is useful to state the definition of independence in different language. Let us say that a linear
combination vanishes if it equals the zero vector, and call a linear combination trivial if every coefficient
is zero. Then the definition of independence can be compactly stated as follows:

A set of vectors is independent if and only if the only linear combination that vanishes is the
trivial one.

Hence we have a procedure for checking that a set of vectors is independent:


